ÉCOLE POLYTECHNIQUE – ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES

CONCOURS D'ADMISSION 2015

FILIÈRE PC

COMPOSITION DE MATHÉMATIQUES - (XEULC)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Toute affirmation doit être clairement et complètement justifiée.

* * *

Dans ce problème, n est un entier strictement positif. L'espace vectoriel réel \mathbb{R}^n est muni du produit scalaire canonique $\langle \cdot, \cdot \rangle$ et de la norme euclidienne associée $\| \cdot \|$; on l'identifie à l'espace $\mathcal{M}_{n,1}(\mathbb{R})$ des vecteurs colonnes à n coordonnées. Ainsi, pour deux vecteurs x et y de \mathbb{R}^n , $\langle x, y \rangle = {}^t xy$.

 $\mathcal{M}_n(\mathbb{R})$ est l'algèbre des matrices $n \times n$ à coefficients réels et $\mathcal{S}_n(\mathbb{R})$ est le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ composé des matrices réelles symétriques. On notera tM la matrice transposée de M et I_n la matrice identité. Par abus de notation, on identifiera $\langle x,y\rangle$ au vecteur à une ligne et une colonne txy .

Les coordonnées d'un n-uplet m de réels (considéré comme vecteur ligne) seront notées m_1, \ldots, m_n .

Si m est un n-uplet de réels, m^{\downarrow} est le n-uplet obtenu à partir de m par permutation de ses coordonnées de sorte que $m_1^{\downarrow} \geqslant m_2^{\downarrow} \geqslant \cdots \geqslant m_n^{\downarrow}$. Autrement dit, il s'agit du n-uplet obtenu en ordonnant dans l'ordre décroissant les coordonnées de m. Par exemple, si m=(3,2,-1,6,2,9), $m^{\downarrow}=(9,6,3,2,2,-1)$.

L'ensemble des valeurs propres d'une matrice M de $\mathcal{M}_n(\mathbb{R})$ sera appelé, comme à l'habitude, spectre de M. On notera s^{\downarrow} l'application de $\mathcal{S}_n(\mathbb{R})$ dans \mathbb{R}^n qui à une matrice M symétrique associe le n-uplet (appelé spectre ordonné) de réels dont les cordonnées sont les éléments ordonnés dans l'ordre décroissant du spectre de M (répétés autant de fois que leur ordre de multiplicité). Ainsi, par exemple, si le spectre de la matrice $M \in \mathcal{S}_4(\mathbb{R})$ vaut $\{-1,3,3,7\}$, on a $s^{\downarrow}(M) = (7,3,3,-1)$.

Pour $M \in \mathcal{M}_n(\mathbb{R})$, on pose

$$||M|| = \sup_{||x||=1} ||Mx||.$$

On admet qu'il s'agit d'une norme sur $\mathcal{M}_n(\mathbb{R})$.

Première partie

- **1a.** Rappeler pourquoi $S_n(\mathbb{R})$ est un espace vectoriel réel et quelle est sa dimension. Pourquoi l'application s^{\downarrow} est-elle bien définie sur $S_n(\mathbb{R})$?
- **1b.** L'application s^{\downarrow} est-elle linéaire? Justifier votre réponse.
- **1c.** Si $M \in \mathcal{S}_n(\mathbb{R})$, exprimer $s^{\downarrow}(-M)$ en fonction des coordonnées (m_1, \ldots, m_n) de $s^{\downarrow}(M)$.

- **1d.** Soit $M = \begin{pmatrix} \lambda & h \\ h & \mu \end{pmatrix}$ une matrice de $\mathcal{S}_2(\mathbb{R})$. Calculer $s^{\downarrow}(M)$.
- **2a.** Soit $M \in \mathcal{S}_n(\mathbb{R})$, on note $m = s^{\downarrow}(M)$ son spectre ordonné. Montrer qu'il existe une base orthonormée (v_1, \ldots, v_n) de \mathbb{R}^n telle que

$$M = \sum_{i=1}^{n} m_i v_i^{\ t} v_i.$$

Une telle décomposition de M sera appelée dans la suite résolution spectrale de M.

2b. Calculer

$$\sup_{\|x\|=1} \langle x, Mx \rangle$$

en fonction des coordonnées de m. Cette borne supérieure est-elle atteinte? (On pourra décomposer x et Mx sur la base orthonormée (v_1, \ldots, v_n) de la question 2a).

2c. Les notations sont celles de la question **2a**. Soit j un entier, $1 \leq j \leq n$. On note \mathcal{V}_j le sous-espace vectoriel de \mathbb{R}^n engendré par (v_1, \ldots, v_j) , et \mathcal{W}_j celui engendré par $(v_j, v_{j+1}, \ldots, v_n)$. Montrer les égalités

$$\inf_{x \in \mathcal{V}_j, \|x\| = 1} \langle x, Mx \rangle = \sup_{x \in \mathcal{W}_j, \|x\| = 1} \langle x, Mx \rangle = m_j.$$

3a. Soient \mathcal{U} et \mathcal{V} deux sous-espaces vectoriels de \mathbb{R}^n tels que

$$\dim \mathcal{U} + \dim \mathcal{V} > n$$
.

Montrer que $\mathcal{U} \cap \mathcal{V}$ ne se réduit pas à $\{0\}$.

3b. Soit $M \in \mathcal{S}_n(\mathbb{R})$, on note $m = s^{\downarrow}(M)$. Soient j un entier, $1 \leqslant j \leqslant n$, et \mathcal{V} un sous-espace vectoriel de \mathbb{R}^n de dimension j. Montrer que

$$\inf_{x \in \mathcal{V}, \|x\| = 1} \langle x, Mx \rangle \leqslant m_j.$$

(On pourra utiliser les questions 2c et 3a, en choisissant $\mathcal{U} = \mathcal{W}_j$.)

3c. En reprenant les notations de la question **3b**, en déduire que

$$\sup_{\mathcal{V} \subset \mathbb{R}^n, \dim \mathcal{V} = j} \inf_{x \in \mathcal{V}, \|x\| = 1} \langle x, Mx \rangle = m_j.$$

Cette borne supérieure est-elle atteinte?

4. Soient m et ℓ deux n-uplets de réels. On note

$$\ell \preccurlyeq m$$
 si et seulement si, pour tout entier $j, 1 \leqslant j \leqslant n, \quad \ell_j \leqslant m_j$.

- **4a.** Soient $L, M \in \mathcal{S}_n(\mathbb{R})$ telles que $(0, \dots, 0) \leq s^{\downarrow}(M L)$. Montrer que $s^{\downarrow}(L) \leq s^{\downarrow}(M)$.
- **4b.** Montrer que pour toute matrice $M \in \mathcal{S}_n(\mathbb{R}), (0, \dots, 0) \leq s^{\downarrow}(\|M\|I_n M).$
- **4c.** Soit $L, M \in \mathcal{S}_n(\mathbb{R})$, on note $m = s^{\downarrow}(M)$ et $\ell = s^{\downarrow}(L)$. Montrer que

$$\max_{1 \le j \le n} |\ell_j - m_j| \le ||L - M||.$$

2

- **4d.** Conclure que la fonction $s^{\downarrow}: \mathcal{S}_n(\mathbb{R}) \to \mathbb{R}^n$ est continue.
- **5.** On note $\mathcal{S}_n^{\dagger}(\mathbb{R})$ l'ensemble des matrices symétriques $n \times n$ dont toutes les valeurs propres sont simples.
- **5a.** Soit $M \in \mathcal{S}_n^{\dagger}(\mathbb{R})$. Déterminer un réel r > 0 tel que la boule ouverte de $\mathcal{S}_n(\mathbb{R})$ centrée en M et de rayon r soit incluse dans $\mathcal{S}_n^{\dagger}(\mathbb{R})$. En déduire que $\mathcal{S}_n^{\dagger}(\mathbb{R})$ est un ouvert de $\mathcal{S}_n(\mathbb{R})$.
- **5b.** Montrer que la première composante s_1^{\downarrow} de s^{\downarrow} est de classe \mathscr{C}^1 sur $\mathcal{S}_2^{\dagger}(\mathbb{R})$, mais pas sur $\mathcal{S}_2(\mathbb{R})$. (On pourra utiliser la question $\mathbf{1d}$.)

Deuxième partie

Dans toute cette partie, on considère deux matrices symétriques réelles $A, B \in \mathcal{S}_n(\mathbb{R})$ et leur somme C = A + B. On note $a = s^{\downarrow}(A), b = s^{\downarrow}(B)$ et $c = s^{\downarrow}(C)$.

6a. Montrer que

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i.$$

- **6b.** Montrer que $a_1 + b_1 \ge c_1$.
- **6c.** Montrer que $a_n + b_n \leqslant c_n$.
- 7a. Soient \mathcal{U}, \mathcal{V} et \mathcal{W} trois sous-espaces vectoriels de \mathbb{R}^n tels que

$$\dim \mathcal{U} + \dim \mathcal{V} + \dim \mathcal{W} > 2n.$$

Montrer que $\mathcal{U} \cap \mathcal{V} \cap \mathcal{W}$ ne se réduit pas à $\{0\}$.

7b. En utilisant des résolutions spectrales de A, B et C, montrer que si les entiers strictement positifs j et k vérifient $j + k \le n + 1$, on a

$$c_{i+k-1} \leqslant a_i + b_k$$
.

En déduire pour tout entier $j, 1 \leq j \leq n$,

$$a_j + b_n \leqslant c_j$$
.

- **8.** On note a_{ii} pour $1 \le i \le n$ les éléments diagonaux de A.
- **8a.** Démontrer que $a_{11} \leq a_1$.
- **8b.** Soient j et k des entiers positifs tels que $1 \leq j < k$ et $s_1 \geq s_2 \geq \cdots \geq s_k$ des réels. On définit $\mathcal{D}_{j,k} = \{(t_1,\ldots,t_k) \in [0,1]^k \mid t_1+\cdots+t_k=j\}$ et f la fonction de $\mathcal{D}_{j,k}$ dans \mathbb{R} définie par

$$f(t_1,\ldots,t_k) = \sum_{i=1}^k s_i t_i.$$

Démontrer que pour tout $(t_1, \ldots, t_k) \in \mathcal{D}_{j,k}$,

$$\sum_{i=1}^{j} s_i - f(t_1, \dots, t_k) \geqslant \sum_{i=1}^{j} (s_i - s_j)(1 - t_i).$$

En déduire que

$$\sup_{\mathcal{D}_{j,k}} f = \sum_{i=1}^{j} s_i.$$

8c. Montrer que, plus généralement qu'en 8a, on a pour tout entier $1\leqslant j\leqslant n$

$$\sum_{i=1}^{j} a_{ii} \leqslant \sum_{i=1}^{j} a_{i}.$$

8d. En déduire que pour tout entier $1 \leq j \leq n$

$$\sum_{i=1}^{j} a_i = \sup_{(x_1, \dots, x_j) \in \mathcal{R}_j} \sum_{i=1}^{j} \langle x_i, Ax_i \rangle,$$

où \mathcal{R}_j est l'ensemble des familles orthonormales de cardinal j dans \mathbb{R}^n .

8e. En conclure que l'on a pour tout entier $1 \le j \le n$

$$\sum_{i=1}^{j} c_i \leqslant \sum_{i=1}^{j} a_i + \sum_{i=1}^{j} b_i.$$

Troisième partie

Dans toute cette partie, on étudie le cas n=2. Pour deux réels u et v tels que $u\geqslant v,$ on note :

$$S(u,v) = \{ M \in \mathcal{S}_2(\mathbb{R}) \mid s^{\downarrow}(M) = (u,v) \}.$$

On fixe $a_1 \geqslant a_2$ et $b_1 \geqslant b_2$, quatre réels vérifiant la relation

$$a_1 - a_2 \geqslant b_1 - b_2.$$

On cherche à identifier l'ensemble

$$\Sigma = \{ s^{\downarrow}(A+B) \mid A \in S(a_1, a_2), B \in S(b_1, b_2) \},\$$

autrement dit, l'ensemble des spectres possibles de somme de deux matrices symétriques réelles de spectres respectifs donnés.

- 9. Montrer que Σ est inclus dans un segment de droite L de longueur $\sqrt{2}(b_1 b_2)$, et dont on précisera les extrémités. On pourra étudier d'abord le cas où A et B sont diagonales.
- 10a. Montrer que

$$\Sigma = \left\{ s^{\downarrow}(A+B) \mid A = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, B \in S(b_1, b_2) \right\}.$$

- **10b.** Déterminer une fonction continue définie sur $[-\pi, \pi]$ dont l'image vaut $S(b_1, b_2)$.
- **10c.** Montrer que $\Sigma = L$.

* >

*