ÉCOLE NORMALE SUPÉRIEURE DE LYON

Concours d'admission session 2016

Filière universitaire : Second concours

COMPOSITION DE MATHÉMATIQUES

Durée: 3 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

Le problème porte entièrement sur des polynômes dits de Bernstein. Les parties sont essentiellement indépendentes les unes des autres, mais les candidats seront évalués sur leur capacités à traiter les différents aspects soulevés.

On note $\mathcal{C}[0,1]$ l'espace vectoriel des fonctions continues $f:[0,1]\to\mathbb{R}$. On munit $\mathcal{C}[0,1]$ de la norme usuelle, donc de la topologie de la convergence uniforme :

$$||f|| = \sup_{x \in [0,1]} |f(x)|.$$

On note P_n le sous-espace de $\mathcal{C}[0,1]$ formé des fonctions polynomiales de degré $\leq n$. Par commodité, on ne distinguera pas un polynôme $Q \in \mathbb{R}[X]$ de la fonction polynomiale $x \mapsto Q(x)$ qu'il définit sur [0,1] ou sur \mathbb{R} . Si $k \in \mathbb{N}$, on note e_k la fonction polynomiale $x \mapsto x^k$. La base canonique de P_n est $\{e_0, \ldots, e_n\}$.

Si $f \in \mathcal{C}[0,1]$, on définit une fonction $B_n f \in P_n$ par

$$B_n f(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

Si $Q \in P_n$, on définit aussi $\Delta_h Q \in P_n$ par

$$\Delta_h Q(x) = Q(x+h) - Q(x).$$

Si $\ell \geq 1$ est un entier, on note $\Delta_h^{(\ell)}$ l'application composée

$$\underbrace{\Delta_h \circ \cdots \circ \Delta_h}_{\ell \text{ termes}}.$$

On a donc $\Delta_h^{(1)} = \Delta_h$. Par extension, on pose $\Delta_h^{(0)} f = f$.

Une intégrale

1. Posons

$$I_{n,k} = \int_0^1 \binom{n}{k} x^k (1-x)^{n-k} dx.$$

Montrer que $I_{n,k} = I_{n,k+1}$ pour tout $k = 0, \dots, n-1$. En déduire la valeur des $I_{n,k}$.

2. Quelle majoration de

$$\int_0^1 |B_n f(x)| \, dx$$

en déduisez-vous?

Polynômes, combinatoire, valeurs propres

3. Vérifier que $B_n: \mathcal{C}[0,1] \to P_n$ est une application linéaire. Montrer que

$$||B_n f|| \le ||f||, \quad \forall f \in \mathcal{C}[0,1].$$

Comment interprétez-vous cette majoration?

- 4. Soit Q une fonction polynomiale, non constante. Montrer que $\deg \Delta_h Q = \deg Q 1$. Exprimer le coefficient dominant de $\Delta_h Q$ en fonction de celui de Q.
- 5. Si $\deg Q \geq \ell$, exprimer le coefficient dominant de $\Delta_h^{(\ell)}Q$ en fonction de celui de Q. Si au contraire $\deg Q < \ell$, que vaut $\Delta_h^{(\ell)}Q$?
- 6. Démontrez la formule

$$\Delta_h^{(\ell)}Q(x) = \sum_{i=0}^{\ell} (-1)^{\ell-i} \binom{\ell}{i} Q(x+ih).$$

7. En déduire que si Q est polynomiale, alors

$$B_n Q(x) = \sum_{j=0}^n \binom{n}{j} x^j \Delta_{1/n}^{(j)} Q(0).$$

8. On note L_n la restriction de B_n à P_n , qui est donc un endomorphisme. Montrer que

$$\deg L_n Q \le \deg Q, \quad \forall Q \in P_n.$$

En déduire que la matrice M_n de B_n , dans la base canonique de P_n , est triangulaire supérieure.

- 9. Calculer les valeurs propres de L_n .
- 10. Montrer que L_n est diagonalisable.
- 11. En déduire que pour tout k = 0, ..., n, L_n admet une fonction propre $p_{n,k}$ de degré k. Quelle est la valeur propre associée à $p_{n,k}$?

Approximation uniforme, probabilités

Si X est une variable aléatoire réelle admettant un moment d'ordre 2, on note E(X) son espérance et V(X) sa variance.

- 12. Soit $n \ge 1$ un entier et $p \in [0,1]$ un nombre réel. Soit X_1, \ldots, X_n des variables aléatoires avec $P(X_i = 1) = p$ et $P(X_i = 0) = 1 p$, qu'on suppose indépendantes. Calculer $E(X_i)$, $V(X_i)$.
- 13. En déduire la valeur de $P(S_n = m)$, où S_n désigne la variable aléatoire

$$S_n = X_1 + \dots + X_n.$$

14. Soit $\delta > 0$. Montrer que

$$P\left(\left|\frac{1}{n}S_n - p\right| > \delta\right) \le \frac{1}{4n\delta^2}$$
.

- 15. On se donne aussi une fonction $f \in \mathcal{C}[0,1]$. Exprimer $B_n f(p)$ comme l'espérance d'une variable aléatoire, en exploitant la question 13.
- 16. Pour $\delta > 0$, on définit

$$\omega_f(\delta) = \sup_{x,y \in [0,1] \text{ et } |y-x| < \delta} |f(y) - f(x)|.$$

Montrer que

$$\lim_{\delta \to 0+} \omega_f(\delta) = 0.$$

17. Montrer que

$$\left| E\left(f\left(\frac{1}{n}S_n\right) \right) - f(p) \right| \le \omega_f(\delta) + 2\|f\|P\left(\left|\frac{1}{n}S_n - p\right| > \delta\right).$$

18. En déduire que $B_n f(p) \to f(p)$ quand $n \to +\infty$, et que cette convergence est uniforme :

$$\lim_{n \to +\infty} ||B_n f - f|| = 0.$$

19. On suppose de plus que f est lipschitzienne. Montrer l'existence d'un nombre fini $C \geq 0$ tel que

$$\forall n \ge 1, \qquad ||B_n f - f|| \le \frac{C}{n^{1/3}}.$$