ÉCOLES NORMALES SUPÉRIEURES ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES

CONCOURS D'ADMISSION - SESSION 2017

FILIÈRE BCPST

COMPOSITION DE MATHÉMATIQUES

Épreuve commune aux ENS de Cachan, Lyon, Paris et à l'ENPC

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

* * *

L'épreuve est composée de cinq parties. Les quatre premières parties sont indépendantes. On pourra admettre les résultats des quatre premières parties pour traiter la cinquième partie.

Soit a_1 , a_2 et c des cœfficients réels donnés. On se propose de contrôler le comportement, quand t tend vers $+\infty$, des fonctions x_1 , y_1 , x_2 et y_2 dérivables dans $[0, +\infty[$ à valeurs dans \mathbb{R} , solutions sur $[0, +\infty[$ des équations différentielles

Plus précisément on se propose de montrer que sous certaines conditions sur les coefficients, il existe des constantes réelles C > 0 et K telles que pour toutes fonctions x_1, y_1, x_2, y_2 solutions de (*), on a pour tout $t \ge 0$

$$x_1(t)^2 + y_1(t)^2 + x_2(t)^2 + y_2(t)^2 \le C(x_1(0)^2 + y_1(0)^2 + x_2(0)^2 + y_2(0)^2) e^{-Kt}.$$

Partie 1 (solutions constantes)

- **1-1.** On suppose que $c(a_1 + a_2) \neq a_1 a_2$. Montrer que les fonctions x_1, y_1, x_2, y_2 solutions de (*) sont constantes sur $[0, +\infty[$ si et seulement si $x_1 = y_1 = x_2 = y_2 = 0$.
- **1-2.** On suppose que $c(a_1 + a_2) = a_1 a_2$. Montrer qu'il existe des fonctions x_1, y_1, x_2, y_2 solutions de (*), constantes mais non toutes nulles sur $[0, +\infty[$.

Partie 2
$$(a_1 = a_2 = 2, c = -\frac{3}{2})$$

2-1. (Question préliminaire) Étant donné un réel $\omega > 0$, expliciter les fonctions x et y solutions sur $[0, +\infty[$ des équations différentielles

$$\left\{ \begin{array}{l} x'(t)=y(t)\\ y'(t)=-(1+\omega^2)x(t)-2y(t) \end{array} \right.$$

en fonction de leurs valeurs x(0) et y(0) en t=0. (On pourra pour cela vérifier qu'une telle fonction x est nécessairement solution de l'équation différentielle du deuxième ordre $x''(t) + 2x'(t) + (1 + \omega^2)x(t) = 0$.)

2-2. (Question préliminaire) Montrer que pour tous réels positifs u et v, on a

$$u^{2} + v^{2} \le (u + v)^{2} \le 2(u^{2} + v^{2}).$$

Dans cette **Partie 2** on suppose que $a_1 = a_2 = 2$, $c = -\frac{3}{2}$.

Soit alors une solution x_1, y_1, x_2, y_2 de (*), et soit les fonctions

$$X = \frac{x_1 + x_2}{2},$$
 $Y = \frac{y_1 + y_2}{2},$ $X_i = x_i - X,$ $Y_i = y_i - Y,$ $i = 1, 2.$

- **2-3.** Écrire les équations différentielles vérifiées par le couple (X,Y) et en déduire son expression explicite à l'aide de **2-1**.
- **2-4.** Pour i = 1, 2 écrire les équations différentielles vérifiées par le couple (X_i, Y_i) et en déduire son expression explicite à l'aide de **2-1**.
- **2-5.** En déduire qu'il existe une constante C > 0 telle que pour toute solution x_1, y_1, x_2, y_2 de (*), on a pour tout $t \ge 0$

$$|x_1(t)| + |y_1(t)| + |x_2(t)| + |y_2(t)| \le C(|x_1(0)| + |y_1(0)| + |x_2(0)| + |y_2(0)|) e^{-t}.$$

(On pourra expliciter $x_1(t)$, $y_1(t)$, $x_2(t)$, $y_2(t)$ en fonction des valeurs $x_1(0)$, $y_1(0)$, $x_2(0)$, $y_2(0)$ en t = 0.)

2-6. En déduire, à l'aide de **2-2**, qu'il existe une constante C > 0 telle que pour toute solution x_1, y_1, x_2, y_2 de (*), on a pour tout $t \ge 0$

$$x_1(t)^2 + y_1(t)^2 + x_2(t)^2 + y_2(t)^2 \le C(x_1(0)^2 + y_1(0)^2 + x_2(0)^2 + y_2(0)^2)e^{-2t}$$

2-7. (Exemple) Dans cette question on suppose que $x_1(0) = x_2(0) = 1 + \sqrt{5}$ et $y_1(0) = y_2(0) = 2$. Montrer qu'il existe une constante D > 0 telle que pour tout $t \ge 0$

$$D\left(x_1(0)^2 + y_1(0)^2 + x_2(0)^2 + y_2(0)^2\right)e^{-2t} \le x_1(t)^2 + y_1(t)^2 + x_2(t)^2 + y_2(t)^2.$$

2

Partie 3

3-1. (Question préliminaire) Montrer que pour tous réels x et y et tout réel $\varepsilon > 0$ on a

$$-\varepsilon x^2 - \frac{y^2}{\varepsilon} \le 2xy \le \varepsilon x^2 + \frac{y^2}{\varepsilon}.$$

(Question préliminaire) Pour des réels $\alpha > 0$ et $\beta > 0$ tels que $\alpha\beta > 1$, déduire de **3-1** qu'il existe 3-2. une constante C > 0 telle que pour tous réels x et y

$$\frac{1}{C}(x^2 + y^2) \le \alpha x^2 + 2xy + \beta y^2 \le C(x^2 + y^2).$$

3-3. Étant donnés des cœfficients réels α_1 , α_2 , β et des solutions x_1 , x_2 , y_1 , y_2 de (*), soit

$$f(t) = \frac{1}{2} \sum_{i=1}^{2} \alpha_i x_i(t)^2 + 2x_i(t)y_i(t) + \beta y_i(t)^2.$$

Donner l'expression de f'(t) en fonction des cœfficients $\alpha_1, \alpha_2, \beta, a_1, a_2, c$ et des solutions x_1, x_2, y_1, y_2 . En déduire, à l'aide de 3-1, que pour tout $\varepsilon > 0$, on a en tout $t \geq 0$

$$f'(t) \le \sum_{i=1}^{2} -\left(a_{i} - c - |c| - \varepsilon\right) x_{i}(t)^{2} + \left(\alpha_{i} - 2 - a_{i}\beta + \beta c\right) x_{i}(t) y_{i}(t) - \left(2\beta - 1 - \frac{\beta^{2}c^{2}}{4\varepsilon}\right) y_{i}(t)^{2}.$$

Dans cette **Partie 3** on suppose désormais que $a_1 > 0$, $a_2 > 0$ et c sont tels que $-2\sqrt{a} < c < 2\sqrt{4+a} - 4$, avec $a = \inf\{a_1, a_2\}.$

3-4. Montrer qu'il existe des coefficients α_1 , α_2 , β et $\varepsilon > 0$ tels que pour i = 1, 2 on ait

$$(1). 2\beta - 1 - \frac{\beta^2 c^2}{4\varepsilon} > 0$$

$$\alpha_i - 2 - a_i \beta + \beta c = 0$$

(3).
$$\alpha_i > 0$$
, $\beta > 0$, $\alpha_i \beta > 1$

(2).
$$\alpha_i - 2 - a_i \beta + \beta c = 0$$

(3). $\alpha_i > 0, \quad \beta > 0, \quad \alpha_i \beta > 1$
(4). $a_i - c - |c| - \varepsilon > 0$.

(On pourra d'abord considérer le cas où c=0. Dans le cas où $c\neq 0$, on pourra vérifier que les conditions (1). à (4). sont satisfaites pour $\beta = \frac{4\varepsilon}{c^2}$, $\alpha_i = 2 + \beta(a_i - c)$ pour i = 1, 2, et enfin $\varepsilon \in \left] \frac{c^2}{4}, a \right[$ si c < 0, $\varepsilon \in \left[\frac{c^2}{4}, a - 2c \right] \text{ si } c > 0.$

3-5. Avec les cœfficients construits en **3-4**, déduire de **3-2** qu'il existe une constante K > 0 telle que

$$f'(t) \le -Kf(t)$$

pour tout $t \geq 0$. En déduire que pour tout $t \geq 0$

$$f(t) \le f(0) e^{-Kt}.$$

3-6. En déduire qu'il existe des constantes C>0 et K>0 telles que pour toute solution x_1,y_1,x_2,y_2 de (*), on a pour tout $t \geq 0$

$$x_1(t)^2 + y_1(t)^2 + x_2(t)^2 + y_2(t)^2 \le C\left(x_1(0)^2 + y_1(0)^2 + x_2(0)^2 + y_2(0)^2\right)e^{-Kt}.$$

3

Partie 4

4-1. (Question préliminaire) Soit λ un réel et M une matrice à d lignes et d colonnes, à cœfficients M_{ij} réels, diagonalisable dans \mathbb{C} et dont les valeurs propres ont toutes une partie réelle inférieure ou égale à λ . Montrer qu'il existe une constante C > 0 telle que si z_1, \ldots, z_d sont des fonctions dérivables dans $[0, +\infty[$ à

Montrer qu'il existe une constante C > 0 telle que si z_1, \ldots, z_d sont des fonctions dérivables dans $[0, +\infty]$ valeurs dans \mathbb{R} , solutions sur $[0, +\infty]$ des équations différentielles

$$z'_{i}(t) = M_{i1} z_{1}(t) + \cdots + M_{id} z_{d}(t)$$

pour $i=1,\ldots,d,$ alors pour $i=1,\ldots,d$ et $t\geq 0$ on a

$$|z_i(t)| \le C(|z_1(0)| + \dots + |z_d(0)|) e^{\lambda t}.$$

(On pourra d'abord considérer le cas particulier où M est diagonale, puis diagonaliser M dans le cas général.)

Dans cette **Partie 4** on suppose que les cœfficients a_1, a_2 et c sont des réels quelconques.

Soit alors une solution x_1, y_1, x_2, y_2 de (*), et soit les fonctions

$$z_1 = x_1, \quad z_2 = x_2, \quad z_3 = y_1, \quad z_4 = y_2.$$

4-2. Expliciter la matrice M à 4 lignes et 4 colonnes, de cœfficients M_{ij} , telle que les fonctions z_1, z_2, z_3, z_4 sont solutions sur $[0, +\infty[$ des équations différentielles

$$z_i'(t) = M_{i1}z_1(t) + M_{i2}z_2(t) + M_{i3}z_3(t) + M_{i4}z_4(t)$$

pour i = 1, 2, 3, 4.

4-3. Écrire cette matrice M à l'aide de 4 matrices O, I, N et -2I à 2 lignes et 2 colonnes, sous la forme

$$M = \begin{pmatrix} O & I \\ N & -2I \end{pmatrix}$$

où O est la matrice nulle, I la matrice identité et N une matrice à expliciter en fonction de a_1 , a_2 et c.

4-4. Sans calculer explicitement les valeurs propres de N, montrer que N est diagonalisable dans \mathbb{R} .

Calculer les valeurs propres n_- et n_+ de N avec $n_- \le n_+$.

- **4-5.** Étant donnés deux vecteurs u et v de \mathbb{C}^2 et un nombre m de \mathbb{C} , montrer que le vecteur (u,v) de \mathbb{C}^4 est un vecteur propre de M associé à la valeur propre m, si et seulement si u est un vecteur propre de N associé à la valeur propre $n = m^2 + 2m$ et v = m u.
- **4-6.** Déduire de **4-4** et **4-5** que M est diagonalisable dans \mathbb{C} si et seulement si les valeurs propres n_{-} et n_{+} sont toutes deux différentes de -1.
- **4-7.** Si n_- et n_+ sont toutes deux différentes de -1, déduire de **4-1** qu'il existe une constante C > 0 telle que pour toute solution x_1, y_1, x_2, y_2 de (*), on a pour tout $t \ge 0$

$$x_1(t)^2 + y_1(t)^2 + x_2(t)^2 + y_2(t)^2 \le C\left(x_1(0)^2 + y_1(0)^2 + x_2(0)^2 + y_2(0)^2\right)e^{2\lambda t}$$

avec $\lambda = -1$ si $n_+ < -1$, et $\lambda = -1 + \sqrt{1 + n_+}$ si $n_+ > -1$ et $n_- \neq -1$.

Partie 5

Comparer les résultats obtenus dans les parties 1 à 4.